Metamath Proof Explorer


Theorem fvres

Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994)

Ref Expression
Assertion fvres ABFBA=FA

Proof

Step Hyp Ref Expression
1 vex xV
2 1 brresi AFBxABAFx
3 2 baib ABAFBxAFx
4 3 iotabidv ABιx|AFBx=ιx|AFx
5 df-fv FBA=ιx|AFBx
6 df-fv FA=ιx|AFx
7 4 5 6 3eqtr4g ABFBA=FA