Metamath Proof Explorer


Theorem oveq1d

Description: Equality deduction for operation value. (Contributed by NM, 13-Mar-1995)

Ref Expression
Hypothesis oveq1d.1 φA=B
Assertion oveq1d φAFC=BFC

Proof

Step Hyp Ref Expression
1 oveq1d.1 φA=B
2 oveq1 A=BAFC=BFC
3 1 2 syl φAFC=BFC