Metamath Proof Explorer


Theorem mulclpi

Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)

Ref Expression
Assertion mulclpi A𝑵B𝑵A𝑵B𝑵

Proof

Step Hyp Ref Expression
1 mulpiord A𝑵B𝑵A𝑵B=A𝑜B
2 pinn A𝑵Aω
3 pinn B𝑵Bω
4 nnmcl AωBωA𝑜Bω
5 2 3 4 syl2an A𝑵B𝑵A𝑜Bω
6 elni2 B𝑵BωB
7 6 simprbi B𝑵B
8 7 adantl A𝑵B𝑵B
9 3 adantl A𝑵B𝑵Bω
10 2 adantr A𝑵B𝑵Aω
11 elni2 A𝑵AωA
12 11 simprbi A𝑵A
13 12 adantr A𝑵B𝑵A
14 nnmordi BωAωABA𝑜A𝑜B
15 9 10 13 14 syl21anc A𝑵B𝑵BA𝑜A𝑜B
16 8 15 mpd A𝑵B𝑵A𝑜A𝑜B
17 16 ne0d A𝑵B𝑵A𝑜B
18 elni A𝑜B𝑵A𝑜BωA𝑜B
19 5 17 18 sylanbrc A𝑵B𝑵A𝑜B𝑵
20 1 19 eqeltrd A𝑵B𝑵A𝑵B𝑵