Metamath Proof Explorer


Theorem distrpi

Description: Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion distrpi A𝑵B+𝑵C=A𝑵B+𝑵A𝑵C

Proof

Step Hyp Ref Expression
1 pinn A𝑵Aω
2 pinn B𝑵Bω
3 pinn C𝑵Cω
4 nndi AωBωCωA𝑜B+𝑜C=A𝑜B+𝑜A𝑜C
5 1 2 3 4 syl3an A𝑵B𝑵C𝑵A𝑜B+𝑜C=A𝑜B+𝑜A𝑜C
6 addclpi B𝑵C𝑵B+𝑵C𝑵
7 mulpiord A𝑵B+𝑵C𝑵A𝑵B+𝑵C=A𝑜B+𝑵C
8 6 7 sylan2 A𝑵B𝑵C𝑵A𝑵B+𝑵C=A𝑜B+𝑵C
9 addpiord B𝑵C𝑵B+𝑵C=B+𝑜C
10 9 oveq2d B𝑵C𝑵A𝑜B+𝑵C=A𝑜B+𝑜C
11 10 adantl A𝑵B𝑵C𝑵A𝑜B+𝑵C=A𝑜B+𝑜C
12 8 11 eqtrd A𝑵B𝑵C𝑵A𝑵B+𝑵C=A𝑜B+𝑜C
13 12 3impb A𝑵B𝑵C𝑵A𝑵B+𝑵C=A𝑜B+𝑜C
14 mulclpi A𝑵B𝑵A𝑵B𝑵
15 mulclpi A𝑵C𝑵A𝑵C𝑵
16 addpiord A𝑵B𝑵A𝑵C𝑵A𝑵B+𝑵A𝑵C=A𝑵B+𝑜A𝑵C
17 14 15 16 syl2an A𝑵B𝑵A𝑵C𝑵A𝑵B+𝑵A𝑵C=A𝑵B+𝑜A𝑵C
18 mulpiord A𝑵B𝑵A𝑵B=A𝑜B
19 mulpiord A𝑵C𝑵A𝑵C=A𝑜C
20 18 19 oveqan12d A𝑵B𝑵A𝑵C𝑵A𝑵B+𝑜A𝑵C=A𝑜B+𝑜A𝑜C
21 17 20 eqtrd A𝑵B𝑵A𝑵C𝑵A𝑵B+𝑵A𝑵C=A𝑜B+𝑜A𝑜C
22 21 3impdi A𝑵B𝑵C𝑵A𝑵B+𝑵A𝑵C=A𝑜B+𝑜A𝑜C
23 5 13 22 3eqtr4d A𝑵B𝑵C𝑵A𝑵B+𝑵C=A𝑵B+𝑵A𝑵C
24 dmaddpi dom+𝑵=𝑵×𝑵
25 0npi ¬𝑵
26 dmmulpi dom𝑵=𝑵×𝑵
27 24 25 26 ndmovdistr ¬A𝑵B𝑵C𝑵A𝑵B+𝑵C=A𝑵B+𝑵A𝑵C
28 23 27 pm2.61i A𝑵B+𝑵C=A𝑵B+𝑵A𝑵C