Metamath Proof Explorer


Theorem addcanpi

Description: Addition cancellation law for positive integers. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion addcanpi A𝑵B𝑵A+𝑵B=A+𝑵CB=C

Proof

Step Hyp Ref Expression
1 addclpi A𝑵B𝑵A+𝑵B𝑵
2 eleq1 A+𝑵B=A+𝑵CA+𝑵B𝑵A+𝑵C𝑵
3 1 2 imbitrid A+𝑵B=A+𝑵CA𝑵B𝑵A+𝑵C𝑵
4 3 imp A+𝑵B=A+𝑵CA𝑵B𝑵A+𝑵C𝑵
5 dmaddpi dom+𝑵=𝑵×𝑵
6 0npi ¬𝑵
7 5 6 ndmovrcl A+𝑵C𝑵A𝑵C𝑵
8 simpr A𝑵C𝑵C𝑵
9 4 7 8 3syl A+𝑵B=A+𝑵CA𝑵B𝑵C𝑵
10 addpiord A𝑵B𝑵A+𝑵B=A+𝑜B
11 10 adantr A𝑵B𝑵C𝑵A+𝑵B=A+𝑜B
12 addpiord A𝑵C𝑵A+𝑵C=A+𝑜C
13 12 adantlr A𝑵B𝑵C𝑵A+𝑵C=A+𝑜C
14 11 13 eqeq12d A𝑵B𝑵C𝑵A+𝑵B=A+𝑵CA+𝑜B=A+𝑜C
15 pinn A𝑵Aω
16 pinn B𝑵Bω
17 pinn C𝑵Cω
18 nnacan AωBωCωA+𝑜B=A+𝑜CB=C
19 18 biimpd AωBωCωA+𝑜B=A+𝑜CB=C
20 15 16 17 19 syl3an A𝑵B𝑵C𝑵A+𝑜B=A+𝑜CB=C
21 20 3expa A𝑵B𝑵C𝑵A+𝑜B=A+𝑜CB=C
22 14 21 sylbid A𝑵B𝑵C𝑵A+𝑵B=A+𝑵CB=C
23 9 22 sylan2 A𝑵B𝑵A+𝑵B=A+𝑵CA𝑵B𝑵A+𝑵B=A+𝑵CB=C
24 23 exp32 A𝑵B𝑵A+𝑵B=A+𝑵CA𝑵B𝑵A+𝑵B=A+𝑵CB=C
25 24 imp4b A𝑵B𝑵A+𝑵B=A+𝑵CA𝑵B𝑵A+𝑵B=A+𝑵CB=C
26 25 pm2.43i A𝑵B𝑵A+𝑵B=A+𝑵CB=C
27 26 ex A𝑵B𝑵A+𝑵B=A+𝑵CB=C
28 oveq2 B=CA+𝑵B=A+𝑵C
29 27 28 impbid1 A𝑵B𝑵A+𝑵B=A+𝑵CB=C