Metamath Proof Explorer


Theorem addpiord

Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion addpiord A𝑵B𝑵A+𝑵B=A+𝑜B

Proof

Step Hyp Ref Expression
1 opelxpi A𝑵B𝑵AB𝑵×𝑵
2 fvres AB𝑵×𝑵+𝑜𝑵×𝑵AB=+𝑜AB
3 df-ov A+𝑵B=+𝑵AB
4 df-pli +𝑵=+𝑜𝑵×𝑵
5 4 fveq1i +𝑵AB=+𝑜𝑵×𝑵AB
6 3 5 eqtri A+𝑵B=+𝑜𝑵×𝑵AB
7 df-ov A+𝑜B=+𝑜AB
8 2 6 7 3eqtr4g AB𝑵×𝑵A+𝑵B=A+𝑜B
9 1 8 syl A𝑵B𝑵A+𝑵B=A+𝑜B