Metamath Proof Explorer


Theorem addpiord

Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion addpiord
|- ( ( A e. N. /\ B e. N. ) -> ( A +N B ) = ( A +o B ) )

Proof

Step Hyp Ref Expression
1 opelxpi
 |-  ( ( A e. N. /\ B e. N. ) -> <. A , B >. e. ( N. X. N. ) )
2 fvres
 |-  ( <. A , B >. e. ( N. X. N. ) -> ( ( +o |` ( N. X. N. ) ) ` <. A , B >. ) = ( +o ` <. A , B >. ) )
3 df-ov
 |-  ( A +N B ) = ( +N ` <. A , B >. )
4 df-pli
 |-  +N = ( +o |` ( N. X. N. ) )
5 4 fveq1i
 |-  ( +N ` <. A , B >. ) = ( ( +o |` ( N. X. N. ) ) ` <. A , B >. )
6 3 5 eqtri
 |-  ( A +N B ) = ( ( +o |` ( N. X. N. ) ) ` <. A , B >. )
7 df-ov
 |-  ( A +o B ) = ( +o ` <. A , B >. )
8 2 6 7 3eqtr4g
 |-  ( <. A , B >. e. ( N. X. N. ) -> ( A +N B ) = ( A +o B ) )
9 1 8 syl
 |-  ( ( A e. N. /\ B e. N. ) -> ( A +N B ) = ( A +o B ) )