Metamath Proof Explorer


Theorem ndmovrcl

Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996)

Ref Expression
Hypotheses ndmov.1 domF=S×S
ndmovrcl.3 ¬S
Assertion ndmovrcl AFBSASBS

Proof

Step Hyp Ref Expression
1 ndmov.1 domF=S×S
2 ndmovrcl.3 ¬S
3 1 ndmov ¬ASBSAFB=
4 3 eleq1d ¬ASBSAFBSS
5 2 4 mtbiri ¬ASBS¬AFBS
6 5 con4i AFBSASBS