| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq2d |
|
| 3 |
|
oveq2 |
|
| 4 |
3
|
oveq2d |
|
| 5 |
2 4
|
eqeq12d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
oveq2d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
8 10
|
eqeq12d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
oveq2d |
|
| 16 |
13 15
|
eqeq12d |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
18 20
|
eqeq12d |
|
| 22 |
|
nna0 |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
oveq2d |
|
| 25 |
|
nnmcl |
|
| 26 |
|
nna0 |
|
| 27 |
25 26
|
syl |
|
| 28 |
24 27
|
eqtr4d |
|
| 29 |
|
nnm0 |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
oveq2d |
|
| 32 |
28 31
|
eqtr4d |
|
| 33 |
|
oveq1 |
|
| 34 |
|
nnasuc |
|
| 35 |
34
|
3adant1 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
nnacl |
|
| 38 |
|
nnmsuc |
|
| 39 |
37 38
|
sylan2 |
|
| 40 |
39
|
3impb |
|
| 41 |
36 40
|
eqtrd |
|
| 42 |
|
nnmsuc |
|
| 43 |
42
|
3adant2 |
|
| 44 |
43
|
oveq2d |
|
| 45 |
|
nnmcl |
|
| 46 |
|
nnaass |
|
| 47 |
25 46
|
syl3an1 |
|
| 48 |
45 47
|
syl3an2 |
|
| 49 |
48
|
3exp |
|
| 50 |
49
|
exp4b |
|
| 51 |
50
|
pm2.43a |
|
| 52 |
51
|
com4r |
|
| 53 |
52
|
pm2.43i |
|
| 54 |
53
|
3imp |
|
| 55 |
44 54
|
eqtr4d |
|
| 56 |
41 55
|
eqeq12d |
|
| 57 |
33 56
|
imbitrrid |
|
| 58 |
57
|
3exp |
|
| 59 |
58
|
com3r |
|
| 60 |
59
|
impd |
|
| 61 |
11 16 21 32 60
|
finds2 |
|
| 62 |
6 61
|
vtoclga |
|
| 63 |
62
|
expdcom |
|
| 64 |
63
|
3imp |
|