Description: Addition of natural numbers is associative. Theorem 4K(1) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnaass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | oveq2 | |
|
3 | 2 | oveq2d | |
4 | 1 3 | eqeq12d | |
5 | 4 | imbi2d | |
6 | oveq2 | |
|
7 | oveq2 | |
|
8 | 7 | oveq2d | |
9 | 6 8 | eqeq12d | |
10 | oveq2 | |
|
11 | oveq2 | |
|
12 | 11 | oveq2d | |
13 | 10 12 | eqeq12d | |
14 | oveq2 | |
|
15 | oveq2 | |
|
16 | 15 | oveq2d | |
17 | 14 16 | eqeq12d | |
18 | nnacl | |
|
19 | nna0 | |
|
20 | 18 19 | syl | |
21 | nna0 | |
|
22 | 21 | oveq2d | |
23 | 22 | adantl | |
24 | 20 23 | eqtr4d | |
25 | suceq | |
|
26 | nnasuc | |
|
27 | 18 26 | sylan | |
28 | nnasuc | |
|
29 | 28 | oveq2d | |
30 | 29 | adantl | |
31 | nnacl | |
|
32 | nnasuc | |
|
33 | 31 32 | sylan2 | |
34 | 30 33 | eqtrd | |
35 | 34 | anassrs | |
36 | 27 35 | eqeq12d | |
37 | 25 36 | imbitrrid | |
38 | 37 | expcom | |
39 | 9 13 17 24 38 | finds2 | |
40 | 5 39 | vtoclga | |
41 | 40 | com12 | |
42 | 41 | 3impia | |