| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
oveq2d |
|
| 4 |
1 3
|
eqeq12d |
|
| 5 |
4
|
imbi2d |
|
| 6 |
|
oveq2 |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
oveq2d |
|
| 9 |
6 8
|
eqeq12d |
|
| 10 |
|
oveq2 |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
10 12
|
eqeq12d |
|
| 14 |
|
oveq2 |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
oveq2d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
|
nnacl |
|
| 19 |
|
nna0 |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
nna0 |
|
| 22 |
21
|
oveq2d |
|
| 23 |
22
|
adantl |
|
| 24 |
20 23
|
eqtr4d |
|
| 25 |
|
suceq |
|
| 26 |
|
nnasuc |
|
| 27 |
18 26
|
sylan |
|
| 28 |
|
nnasuc |
|
| 29 |
28
|
oveq2d |
|
| 30 |
29
|
adantl |
|
| 31 |
|
nnacl |
|
| 32 |
|
nnasuc |
|
| 33 |
31 32
|
sylan2 |
|
| 34 |
30 33
|
eqtrd |
|
| 35 |
34
|
anassrs |
|
| 36 |
27 35
|
eqeq12d |
|
| 37 |
25 36
|
imbitrrid |
|
| 38 |
37
|
expcom |
|
| 39 |
9 13 17 24 38
|
finds2 |
|
| 40 |
5 39
|
vtoclga |
|
| 41 |
40
|
com12 |
|
| 42 |
41
|
3impia |
|