Metamath Proof Explorer


Theorem finds2

Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of Suppes p. 136. (Contributed by NM, 29-Nov-2002)

Ref Expression
Hypotheses finds2.1 x=φψ
finds2.2 x=yφχ
finds2.3 x=sucyφθ
finds2.4 τψ
finds2.5 yωτχθ
Assertion finds2 xωτφ

Proof

Step Hyp Ref Expression
1 finds2.1 x=φψ
2 finds2.2 x=yφχ
3 finds2.3 x=sucyφθ
4 finds2.4 τψ
5 finds2.5 yωτχθ
6 0ex V
7 1 imbi2d x=τφτψ
8 6 7 elab x|τφτψ
9 4 8 mpbir x|τφ
10 5 a2d yωτχτθ
11 vex yV
12 2 imbi2d x=yτφτχ
13 11 12 elab yx|τφτχ
14 11 sucex sucyV
15 3 imbi2d x=sucyτφτθ
16 14 15 elab sucyx|τφτθ
17 10 13 16 3imtr4g yωyx|τφsucyx|τφ
18 17 rgen yωyx|τφsucyx|τφ
19 peano5 x|τφyωyx|τφsucyx|τφωx|τφ
20 9 18 19 mp2an ωx|τφ
21 20 sseli xωxx|τφ
22 abid xx|τφτφ
23 21 22 sylib xωτφ