| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							finds2.1 | 
							⊢ ( 𝑥  =  ∅  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							finds2.2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							finds2.3 | 
							⊢ ( 𝑥  =  suc  𝑦  →  ( 𝜑  ↔  𝜃 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							finds2.4 | 
							⊢ ( 𝜏  →  𝜓 )  | 
						
						
							| 5 | 
							
								
							 | 
							finds2.5 | 
							⊢ ( 𝑦  ∈  ω  →  ( 𝜏  →  ( 𝜒  →  𝜃 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 7 | 
							
								1
							 | 
							imbi2d | 
							⊢ ( 𝑥  =  ∅  →  ( ( 𝜏  →  𝜑 )  ↔  ( 𝜏  →  𝜓 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							elab | 
							⊢ ( ∅  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  ↔  ( 𝜏  →  𝜓 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							mpbir | 
							⊢ ∅  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  | 
						
						
							| 10 | 
							
								5
							 | 
							a2d | 
							⊢ ( 𝑦  ∈  ω  →  ( ( 𝜏  →  𝜒 )  →  ( 𝜏  →  𝜃 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 12 | 
							
								2
							 | 
							imbi2d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝜏  →  𝜑 )  ↔  ( 𝜏  →  𝜒 ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							elab | 
							⊢ ( 𝑦  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  ↔  ( 𝜏  →  𝜒 ) )  | 
						
						
							| 14 | 
							
								11
							 | 
							sucex | 
							⊢ suc  𝑦  ∈  V  | 
						
						
							| 15 | 
							
								3
							 | 
							imbi2d | 
							⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝜏  →  𝜑 )  ↔  ( 𝜏  →  𝜃 ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							elab | 
							⊢ ( suc  𝑦  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  ↔  ( 𝜏  →  𝜃 ) )  | 
						
						
							| 17 | 
							
								10 13 16
							 | 
							3imtr4g | 
							⊢ ( 𝑦  ∈  ω  →  ( 𝑦  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  →  suc  𝑦  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) } ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rgen | 
							⊢ ∀ 𝑦  ∈  ω ( 𝑦  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  →  suc  𝑦  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) } )  | 
						
						
							| 19 | 
							
								
							 | 
							peano5 | 
							⊢ ( ( ∅  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  ∧  ∀ 𝑦  ∈  ω ( 𝑦  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  →  suc  𝑦  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) } ) )  →  ω  ⊆  { 𝑥  ∣  ( 𝜏  →  𝜑 ) } )  | 
						
						
							| 20 | 
							
								9 18 19
							 | 
							mp2an | 
							⊢ ω  ⊆  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  | 
						
						
							| 21 | 
							
								20
							 | 
							sseli | 
							⊢ ( 𝑥  ∈  ω  →  𝑥  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) } )  | 
						
						
							| 22 | 
							
								
							 | 
							abid | 
							⊢ ( 𝑥  ∈  { 𝑥  ∣  ( 𝜏  →  𝜑 ) }  ↔  ( 𝜏  →  𝜑 ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							sylib | 
							⊢ ( 𝑥  ∈  ω  →  ( 𝜏  →  𝜑 ) )  |