| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							finds2.1 | 
							 |-  ( x = (/) -> ( ph <-> ps ) )  | 
						
						
							| 2 | 
							
								
							 | 
							finds2.2 | 
							 |-  ( x = y -> ( ph <-> ch ) )  | 
						
						
							| 3 | 
							
								
							 | 
							finds2.3 | 
							 |-  ( x = suc y -> ( ph <-> th ) )  | 
						
						
							| 4 | 
							
								
							 | 
							finds2.4 | 
							 |-  ( ta -> ps )  | 
						
						
							| 5 | 
							
								
							 | 
							finds2.5 | 
							 |-  ( y e. _om -> ( ta -> ( ch -> th ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 7 | 
							
								1
							 | 
							imbi2d | 
							 |-  ( x = (/) -> ( ( ta -> ph ) <-> ( ta -> ps ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							elab | 
							 |-  ( (/) e. { x | ( ta -> ph ) } <-> ( ta -> ps ) ) | 
						
						
							| 9 | 
							
								4 8
							 | 
							mpbir | 
							 |-  (/) e. { x | ( ta -> ph ) } | 
						
						
							| 10 | 
							
								5
							 | 
							a2d | 
							 |-  ( y e. _om -> ( ( ta -> ch ) -> ( ta -> th ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 12 | 
							
								2
							 | 
							imbi2d | 
							 |-  ( x = y -> ( ( ta -> ph ) <-> ( ta -> ch ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							elab | 
							 |-  ( y e. { x | ( ta -> ph ) } <-> ( ta -> ch ) ) | 
						
						
							| 14 | 
							
								11
							 | 
							sucex | 
							 |-  suc y e. _V  | 
						
						
							| 15 | 
							
								3
							 | 
							imbi2d | 
							 |-  ( x = suc y -> ( ( ta -> ph ) <-> ( ta -> th ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							elab | 
							 |-  ( suc y e. { x | ( ta -> ph ) } <-> ( ta -> th ) ) | 
						
						
							| 17 | 
							
								10 13 16
							 | 
							3imtr4g | 
							 |-  ( y e. _om -> ( y e. { x | ( ta -> ph ) } -> suc y e. { x | ( ta -> ph ) } ) ) | 
						
						
							| 18 | 
							
								17
							 | 
							rgen | 
							 |-  A. y e. _om ( y e. { x | ( ta -> ph ) } -> suc y e. { x | ( ta -> ph ) } ) | 
						
						
							| 19 | 
							
								
							 | 
							peano5 | 
							 |-  ( ( (/) e. { x | ( ta -> ph ) } /\ A. y e. _om ( y e. { x | ( ta -> ph ) } -> suc y e. { x | ( ta -> ph ) } ) ) -> _om C_ { x | ( ta -> ph ) } ) | 
						
						
							| 20 | 
							
								9 18 19
							 | 
							mp2an | 
							 |-  _om C_ { x | ( ta -> ph ) } | 
						
						
							| 21 | 
							
								20
							 | 
							sseli | 
							 |-  ( x e. _om -> x e. { x | ( ta -> ph ) } ) | 
						
						
							| 22 | 
							
								
							 | 
							abid | 
							 |-  ( x e. { x | ( ta -> ph ) } <-> ( ta -> ph ) ) | 
						
						
							| 23 | 
							
								21 22
							 | 
							sylib | 
							 |-  ( x e. _om -> ( ta -> ph ) )  |