Metamath Proof Explorer


Theorem 0ex

Description: The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of TakeutiZaring p. 20. For the unabbreviated version, see ax-nul . (Contributed by NM, 21-Jun-1993) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion 0ex
|- (/) e. _V

Proof

Step Hyp Ref Expression
1 ax-nul
 |-  E. x A. y -. y e. x
2 eq0
 |-  ( x = (/) <-> A. y -. y e. x )
3 2 exbii
 |-  ( E. x x = (/) <-> E. x A. y -. y e. x )
4 1 3 mpbir
 |-  E. x x = (/)
5 4 issetri
 |-  (/) e. _V