Metamath Proof Explorer


Theorem eq0

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Assertion eq0
|- ( A = (/) <-> A. x -. x e. A )

Proof

Step Hyp Ref Expression
1 dfnul4
 |-  (/) = { y | F. }
2 1 eqeq2i
 |-  ( A = (/) <-> A = { y | F. } )
3 dfcleq
 |-  ( A = { y | F. } <-> A. x ( x e. A <-> x e. { y | F. } ) )
4 df-clab
 |-  ( x e. { y | F. } <-> [ x / y ] F. )
5 sbv
 |-  ( [ x / y ] F. <-> F. )
6 4 5 bitri
 |-  ( x e. { y | F. } <-> F. )
7 6 bibi2i
 |-  ( ( x e. A <-> x e. { y | F. } ) <-> ( x e. A <-> F. ) )
8 nbfal
 |-  ( -. x e. A <-> ( x e. A <-> F. ) )
9 7 8 bitr4i
 |-  ( ( x e. A <-> x e. { y | F. } ) <-> -. x e. A )
10 9 albii
 |-  ( A. x ( x e. A <-> x e. { y | F. } ) <-> A. x -. x e. A )
11 3 10 bitri
 |-  ( A = { y | F. } <-> A. x -. x e. A )
12 2 11 bitri
 |-  ( A = (/) <-> A. x -. x e. A )