Metamath Proof Explorer


Theorem eq0

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Assertion eq0 A=x¬xA

Proof

Step Hyp Ref Expression
1 dfnul4 =y|
2 1 eqeq2i A=A=y|
3 dfcleq A=y|xxAxy|
4 df-clab xy|xy
5 sbv xy
6 4 5 bitri xy|
7 6 bibi2i xAxy|xA
8 nbfal ¬xAxA
9 7 8 bitr4i xAxy|¬xA
10 9 albii xxAxy|x¬xA
11 3 10 bitri A=y|x¬xA
12 2 11 bitri A=x¬xA