Metamath Proof Explorer


Theorem sbv

Description: Substitution for a variable not occurring in a proposition. See sbf for a version without disjoint variable condition on x , ph . If one adds a disjoint variable condition on x , t , then sbv can be proved directly by chaining equsv with sb6 . (Contributed by BJ, 22-Dec-2020)

Ref Expression
Assertion sbv t x φ φ

Proof

Step Hyp Ref Expression
1 spsbe t x φ x φ
2 ax5e x φ φ
3 1 2 syl t x φ φ
4 ax-5 φ x φ
5 stdpc4 x φ t x φ
6 4 5 syl φ t x φ
7 3 6 impbii t x φ φ