Metamath Proof Explorer


Theorem ax5e

Description: A rephrasing of ax-5 using the existential quantifier. (Contributed by Wolf Lammen, 4-Dec-2017)

Ref Expression
Assertion ax5e x φ φ

Proof

Step Hyp Ref Expression
1 ax-5 ¬ φ x ¬ φ
2 eximal x φ φ ¬ φ x ¬ φ
3 1 2 mpbir x φ φ