Metamath Proof Explorer


Theorem spsbe

Description: Existential generalization: if a proposition is true for a specific instance, then there exists an instance where it is true. (Contributed by NM, 29-Jun-1993) (Proof shortened by Wolf Lammen, 3-May-2018) Revise df-sb . (Revised by BJ, 22-Dec-2020) (Proof shortened by Steven Nguyen, 11-Jul-2023)

Ref Expression
Assertion spsbe t x φ x φ

Proof

Step Hyp Ref Expression
1 df-sb t x φ y y = t x x = y φ
2 alequexv y y = t x x = y φ y x x = y φ
3 1 2 sylbi t x φ y x x = y φ
4 exsbim y x x = y φ x φ
5 3 4 syl t x φ x φ