Metamath Proof Explorer


Theorem sbv

Description: Substitution for a variable not occurring in a proposition. See sbf for a version without disjoint variable condition on x , ph . If one adds a disjoint variable condition on x , t , then sbv can be proved directly by chaining equsv with sb6 . (Contributed by BJ, 22-Dec-2020)

Ref Expression
Assertion sbv ( [ 𝑡 / 𝑥 ] 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 spsbe ( [ 𝑡 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 )
2 ax5e ( ∃ 𝑥 𝜑𝜑 )
3 1 2 syl ( [ 𝑡 / 𝑥 ] 𝜑𝜑 )
4 ax-5 ( 𝜑 → ∀ 𝑥 𝜑 )
5 stdpc4 ( ∀ 𝑥 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 )
6 4 5 syl ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 )
7 3 6 impbii ( [ 𝑡 / 𝑥 ] 𝜑𝜑 )