Metamath Proof Explorer


Theorem elab

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 1-Aug-1994) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Oct-2024)

Ref Expression
Hypotheses elab.1 𝐴 ∈ V
elab.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion elab ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 )

Proof

Step Hyp Ref Expression
1 elab.1 𝐴 ∈ V
2 elab.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 2 elabg ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )
4 1 3 ax-mp ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 )