Metamath Proof Explorer


Theorem elabg

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 14-Apr-1995) Avoid ax-13 . (Revised by SN, 23-Nov-2022) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Oct-2024)

Ref Expression
Hypothesis elabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion elabg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 elabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 elab6g ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
3 1 pm5.74i ( ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝑥 = 𝐴𝜓 ) )
4 3 albii ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜓 ) )
5 19.23v ( ∀ 𝑥 ( 𝑥 = 𝐴𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) )
6 4 5 bitri ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) )
7 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
8 pm5.5 ( ∃ 𝑥 𝑥 = 𝐴 → ( ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) ↔ 𝜓 ) )
9 7 8 syl ( 𝐴𝑉 → ( ( ∃ 𝑥 𝑥 = 𝐴𝜓 ) ↔ 𝜓 ) )
10 6 9 bitrid ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )
11 2 10 bitrd ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )