Metamath Proof Explorer


Theorem elabg

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 14-Apr-1995) Remove dependency on ax-13 . (Revised by Steven Nguyen, 23-Nov-2022)

Ref Expression
Hypothesis elabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion elabg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 elabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 nfab1 𝑥 { 𝑥𝜑 }
3 2 nfel2 𝑥 𝐴 ∈ { 𝑥𝜑 }
4 nfv 𝑥 𝜓
5 3 4 nfbi 𝑥 ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 )
6 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝐴 ∈ { 𝑥𝜑 } ) )
7 6 1 bibi12d ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 ) ↔ ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) ) )
8 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
9 5 7 8 vtoclg1f ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )