Metamath Proof Explorer


Theorem albii

Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994)

Ref Expression
Hypothesis albii.1 ( 𝜑𝜓 )
Assertion albii ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 albii.1 ( 𝜑𝜓 )
2 albi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) )
3 2 1 mpg ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 )