Metamath Proof Explorer
Description: Inference adding universal quantifier to both sides of an equivalence.
(Contributed by NM, 7-Aug-1994)
|
|
Ref |
Expression |
|
Hypothesis |
albii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
Assertion |
albii |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
albii.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
2 |
|
albi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) ) |
3 |
2 1
|
mpg |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) |