Step |
Hyp |
Ref |
Expression |
1 |
|
elissetv |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 𝑦 = 𝐴 ) |
2 |
|
vextru |
⊢ 𝑦 ∈ { 𝑧 ∣ ⊤ } |
3 |
2
|
biantru |
⊢ ( 𝑦 = 𝐴 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑧 ∣ ⊤ } ) ) |
4 |
3
|
exbii |
⊢ ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑧 ∣ ⊤ } ) ) |
5 |
|
dfclel |
⊢ ( 𝐴 ∈ { 𝑧 ∣ ⊤ } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑧 ∣ ⊤ } ) ) |
6 |
4 5
|
bitr4i |
⊢ ( ∃ 𝑦 𝑦 = 𝐴 ↔ 𝐴 ∈ { 𝑧 ∣ ⊤ } ) |
7 |
|
vextru |
⊢ 𝑥 ∈ { 𝑧 ∣ ⊤ } |
8 |
7
|
biantru |
⊢ ( 𝑥 = 𝐴 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ { 𝑧 ∣ ⊤ } ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ { 𝑧 ∣ ⊤ } ) ) |
10 |
|
dfclel |
⊢ ( 𝐴 ∈ { 𝑧 ∣ ⊤ } ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ { 𝑧 ∣ ⊤ } ) ) |
11 |
9 10
|
bitr4i |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ { 𝑧 ∣ ⊤ } ) |
12 |
6 11
|
bitr4i |
⊢ ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
13 |
1 12
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |