Metamath Proof Explorer


Theorem elabg

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 14-Apr-1995) Remove dependency on ax-13 . (Revised by Steven Nguyen, 23-Nov-2022)

Ref Expression
Hypothesis elabg.1
|- ( x = A -> ( ph <-> ps ) )
Assertion elabg
|- ( A e. V -> ( A e. { x | ph } <-> ps ) )

Proof

Step Hyp Ref Expression
1 elabg.1
 |-  ( x = A -> ( ph <-> ps ) )
2 nfab1
 |-  F/_ x { x | ph }
3 2 nfel2
 |-  F/ x A e. { x | ph }
4 nfv
 |-  F/ x ps
5 3 4 nfbi
 |-  F/ x ( A e. { x | ph } <-> ps )
6 eleq1
 |-  ( x = A -> ( x e. { x | ph } <-> A e. { x | ph } ) )
7 6 1 bibi12d
 |-  ( x = A -> ( ( x e. { x | ph } <-> ph ) <-> ( A e. { x | ph } <-> ps ) ) )
8 abid
 |-  ( x e. { x | ph } <-> ph )
9 5 7 8 vtoclg1f
 |-  ( A e. V -> ( A e. { x | ph } <-> ps ) )