Step |
Hyp |
Ref |
Expression |
1 |
|
elabg.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
elab6g |
|- ( A e. V -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |
3 |
1
|
pm5.74i |
|- ( ( x = A -> ph ) <-> ( x = A -> ps ) ) |
4 |
3
|
albii |
|- ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) |
5 |
|
19.23v |
|- ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) |
6 |
4 5
|
bitri |
|- ( A. x ( x = A -> ph ) <-> ( E. x x = A -> ps ) ) |
7 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
8 |
|
pm5.5 |
|- ( E. x x = A -> ( ( E. x x = A -> ps ) <-> ps ) ) |
9 |
7 8
|
syl |
|- ( A e. V -> ( ( E. x x = A -> ps ) <-> ps ) ) |
10 |
6 9
|
syl5bb |
|- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |
11 |
2 10
|
bitrd |
|- ( A e. V -> ( A e. { x | ph } <-> ps ) ) |