Metamath Proof Explorer


Theorem elab

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 1-Aug-1994) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Oct-2024)

Ref Expression
Hypotheses elab.1 AV
elab.2 x=Aφψ
Assertion elab Ax|φψ

Proof

Step Hyp Ref Expression
1 elab.1 AV
2 elab.2 x=Aφψ
3 2 elabg AVAx|φψ
4 1 3 ax-mp Ax|φψ