Metamath Proof Explorer


Theorem peano5

Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of TakeutiZaring p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes . (Contributed by NM, 18-Feb-2004) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion peano5 AxωxAsucxAωA

Proof

Step Hyp Ref Expression
1 eldifn zωA¬zA
2 1 adantl AxωxAsucxAzωA¬zA
3 eldifi zωAzω
4 elndif A¬ωA
5 eleq1 z=zωAωA
6 5 biimpcd zωAz=ωA
7 6 necon3bd zωA¬ωAz
8 4 7 mpan9 AzωAz
9 nnsuc zωzyωz=sucy
10 3 8 9 syl2an2 AzωAyωz=sucy
11 10 ad4ant13 AxωxAsucxAzωAωAz=yωz=sucy
12 eleq1w x=yxAyA
13 suceq x=ysucx=sucy
14 13 eleq1d x=ysucxAsucyA
15 12 14 imbi12d x=yxAsucxAyAsucyA
16 15 rspccv xωxAsucxAyωyAsucyA
17 vex yV
18 17 sucid ysucy
19 eleq2 z=sucyyzysucy
20 18 19 mpbiri z=sucyyz
21 eleq1 z=sucyzωsucyω
22 peano2b yωsucyω
23 21 22 bitr4di z=sucyzωyω
24 minel yzωAz=¬yωA
25 neldif yω¬yωAyA
26 24 25 sylan2 yωyzωAz=yA
27 26 exp32 yωyzωAz=yA
28 23 27 syl6bi z=sucyzωyzωAz=yA
29 20 28 mpid z=sucyzωωAz=yA
30 3 29 syl5 z=sucyzωAωAz=yA
31 30 impd z=sucyzωAωAz=yA
32 eleq1a sucyAz=sucyzA
33 32 com12 z=sucysucyAzA
34 31 33 imim12d z=sucyyAsucyAzωAωAz=zA
35 34 com13 zωAωAz=yAsucyAz=sucyzA
36 16 35 sylan9 xωxAsucxAzωAωAz=yωz=sucyzA
37 36 rexlimdv xωxAsucxAzωAωAz=yωz=sucyzA
38 37 exp32 xωxAsucxAzωAωAz=yωz=sucyzA
39 38 a1i AxωxAsucxAzωAωAz=yωz=sucyzA
40 39 imp41 AxωxAsucxAzωAωAz=yωz=sucyzA
41 11 40 mpd AxωxAsucxAzωAωAz=zA
42 2 41 mtand AxωxAsucxAzωA¬ωAz=
43 42 nrexdv AxωxAsucxA¬zωAωAz=
44 ordom Ordω
45 difss ωAω
46 tz7.5 OrdωωAωωAzωAωAz=
47 44 45 46 mp3an12 ωAzωAωAz=
48 47 necon1bi ¬zωAωAz=ωA=
49 43 48 syl AxωxAsucxAωA=
50 ssdif0 ωAωA=
51 49 50 sylibr AxωxAsucxAωA