Metamath Proof Explorer


Theorem nrexdv

Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003) (Proof shortened by Wolf Lammen, 5-Jan-2020)

Ref Expression
Hypothesis nrexdv.1 φxA¬ψ
Assertion nrexdv φ¬xAψ

Proof

Step Hyp Ref Expression
1 nrexdv.1 φxA¬ψ
2 1 ralrimiva φxA¬ψ
3 ralnex xA¬ψ¬xAψ
4 2 3 sylib φ¬xAψ