Metamath Proof Explorer


Theorem ralrimivw

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypothesis ralrimivw.1 φψ
Assertion ralrimivw φxAψ

Proof

Step Hyp Ref Expression
1 ralrimivw.1 φψ
2 1 a1d φxAψ
3 2 ralrimiv φxAψ