Metamath Proof Explorer


Theorem ralrimivw

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypothesis ralrimivw.1 ( 𝜑𝜓 )
Assertion ralrimivw ( 𝜑 → ∀ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ralrimivw.1 ( 𝜑𝜓 )
2 1 a1d ( 𝜑 → ( 𝑥𝐴𝜓 ) )
3 2 ralrimiv ( 𝜑 → ∀ 𝑥𝐴 𝜓 )