Metamath Proof Explorer


Theorem ralrimiv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 4-Dec-2019)

Ref Expression
Hypothesis ralrimiv.1 ( 𝜑 → ( 𝑥𝐴𝜓 ) )
Assertion ralrimiv ( 𝜑 → ∀ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ralrimiv.1 ( 𝜑 → ( 𝑥𝐴𝜓 ) )
2 ax-5 ( 𝜑 → ∀ 𝑥 𝜑 )
3 2 1 hbralrimi ( 𝜑 → ∀ 𝑥𝐴 𝜓 )