Metamath Proof Explorer
Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted
quantifier version.) (Contributed by NM, 2-Jan-2006)
|
|
Ref |
Expression |
|
Hypothesis |
ralrimiva.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) |
|
Assertion |
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ralrimiva.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) |
2 |
1
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |
3 |
2
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |