Metamath Proof Explorer


Theorem ralrimiva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006)

Ref Expression
Hypothesis ralrimiva.1 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
Assertion ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ralrimiva.1 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
2 1 ex ( 𝜑 → ( 𝑥𝐴𝜓 ) )
3 2 ralrimiv ( 𝜑 → ∀ 𝑥𝐴 𝜓 )