Metamath Proof Explorer


Theorem ralrimiv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 4-Dec-2019)

Ref Expression
Hypothesis ralrimiv.1
|- ( ph -> ( x e. A -> ps ) )
Assertion ralrimiv
|- ( ph -> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 ralrimiv.1
 |-  ( ph -> ( x e. A -> ps ) )
2 ax-5
 |-  ( ph -> A. x ph )
3 2 1 hbralrimi
 |-  ( ph -> A. x e. A ps )