Metamath Proof Explorer


Theorem ralnex

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by BJ, 16-Jul-2021)

Ref Expression
Assertion ralnex x A ¬ φ ¬ x A φ

Proof

Step Hyp Ref Expression
1 raln x A ¬ φ x ¬ x A φ
2 alnex x ¬ x A φ ¬ x x A φ
3 df-rex x A φ x x A φ
4 2 3 xchbinxr x ¬ x A φ ¬ x A φ
5 1 4 bitri x A ¬ φ ¬ x A φ