Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by BJ, 16-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ralnex | |- ( A. x e. A -. ph <-> -. E. x e. A ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raln | |- ( A. x e. A -. ph <-> A. x -. ( x e. A /\ ph ) ) |
|
2 | alnex | |- ( A. x -. ( x e. A /\ ph ) <-> -. E. x ( x e. A /\ ph ) ) |
|
3 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
4 | 2 3 | xchbinxr | |- ( A. x -. ( x e. A /\ ph ) <-> -. E. x e. A ph ) |
5 | 1 4 | bitri | |- ( A. x e. A -. ph <-> -. E. x e. A ph ) |