Metamath Proof Explorer


Theorem ralnex

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by BJ, 16-Jul-2021)

Ref Expression
Assertion ralnex
|- ( A. x e. A -. ph <-> -. E. x e. A ph )

Proof

Step Hyp Ref Expression
1 raln
 |-  ( A. x e. A -. ph <-> A. x -. ( x e. A /\ ph ) )
2 alnex
 |-  ( A. x -. ( x e. A /\ ph ) <-> -. E. x ( x e. A /\ ph ) )
3 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
4 2 3 xchbinxr
 |-  ( A. x -. ( x e. A /\ ph ) <-> -. E. x e. A ph )
5 1 4 bitri
 |-  ( A. x e. A -. ph <-> -. E. x e. A ph )