Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by Wolf Lammen, 26-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrex2 | |- ( E. x e. A ph <-> -. A. x e. A -. ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex | |- ( A. x e. A -. ph <-> -. E. x e. A ph ) |
|
2 | 1 | con2bii | |- ( E. x e. A ph <-> -. A. x e. A -. ph ) |