Metamath Proof Explorer


Theorem dfrex2

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by Wolf Lammen, 26-Nov-2019)

Ref Expression
Assertion dfrex2
|- ( E. x e. A ph <-> -. A. x e. A -. ph )

Proof

Step Hyp Ref Expression
1 ralnex
 |-  ( A. x e. A -. ph <-> -. E. x e. A ph )
2 1 con2bii
 |-  ( E. x e. A ph <-> -. A. x e. A -. ph )