Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by Wolf Lammen, 26-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
2 | 1 | con2bii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |