Metamath Proof Explorer


Theorem nrex

Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003)

Ref Expression
Hypothesis nrex.1 ( 𝑥𝐴 → ¬ 𝜓 )
Assertion nrex ¬ ∃ 𝑥𝐴 𝜓

Proof

Step Hyp Ref Expression
1 nrex.1 ( 𝑥𝐴 → ¬ 𝜓 )
2 1 rgen 𝑥𝐴 ¬ 𝜓
3 ralnex ( ∀ 𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥𝐴 𝜓 )
4 2 3 mpbi ¬ ∃ 𝑥𝐴 𝜓