Metamath Proof Explorer


Theorem nrex

Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003)

Ref Expression
Hypothesis nrex.1 x A ¬ ψ
Assertion nrex ¬ x A ψ

Proof

Step Hyp Ref Expression
1 nrex.1 x A ¬ ψ
2 1 rgen x A ¬ ψ
3 ralnex x A ¬ ψ ¬ x A ψ
4 2 3 mpbi ¬ x A ψ