Metamath Proof Explorer


Theorem nrex

Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003)

Ref Expression
Hypothesis nrex.1 xA¬ψ
Assertion nrex ¬xAψ

Proof

Step Hyp Ref Expression
1 nrex.1 xA¬ψ
2 1 rgen xA¬ψ
3 ralnex xA¬ψ¬xAψ
4 2 3 mpbi ¬xAψ