Metamath Proof Explorer


Theorem ralnex

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by BJ, 16-Jul-2021)

Ref Expression
Assertion ralnex ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 raln ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥𝐴𝜑 ) )
2 alnex ( ∀ 𝑥 ¬ ( 𝑥𝐴𝜑 ) ↔ ¬ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
4 2 3 xchbinxr ( ∀ 𝑥 ¬ ( 𝑥𝐴𝜑 ) ↔ ¬ ∃ 𝑥𝐴 𝜑 )
5 1 4 bitri ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝐴 𝜑 )