Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) (Proof shortened by BJ, 16-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raln | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | alnex | ⊢ ( ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
4 | 2 3 | xchbinxr | ⊢ ( ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
5 | 1 4 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ) |