Description: Restricted universally quantified negation expressed as a universally quantified negation. (Contributed by BJ, 16-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raln | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝜑 ) ) | |
| 2 | imnang | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝜑 ) ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |