Metamath Proof Explorer


Theorem alnex

Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal (but does not depend on ax-4 contrary to it). See also the dual pair df-ex / alex . Theorem 19.7 of Margaris p. 89. (Contributed by NM, 12-Mar-1993)

Ref Expression
Assertion alnex
|- ( A. x -. ph <-> -. E. x ph )

Proof

Step Hyp Ref Expression
1 df-ex
 |-  ( E. x ph <-> -. A. x -. ph )
2 1 con2bii
 |-  ( A. x -. ph <-> -. E. x ph )