Metamath Proof Explorer


Definition df-ex

Description: Define existential quantification. E. x ph means "there exists at least one set x such that ph is true". Dual of alex . See also the dual pair alnex / exnal . Definition of Margaris p. 49. (Contributed by NM, 10-Jan-1993)

Ref Expression
Assertion df-ex
|- ( E. x ph <-> -. A. x -. ph )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 wph
 |-  ph
2 1 0 wex
 |-  E. x ph
3 1 wn
 |-  -. ph
4 3 0 wal
 |-  A. x -. ph
5 4 wn
 |-  -. A. x -. ph
6 2 5 wb
 |-  ( E. x ph <-> -. A. x -. ph )