Metamath Proof Explorer


Theorem alex

Description: Universal quantifier in terms of existential quantifier and negation. Dual of df-ex . See also the dual pair alnex / exnal . Theorem 19.6 of Margaris p. 89. (Contributed by NM, 12-Mar-1993)

Ref Expression
Assertion alex
|- ( A. x ph <-> -. E. x -. ph )

Proof

Step Hyp Ref Expression
1 notnotb
 |-  ( ph <-> -. -. ph )
2 1 albii
 |-  ( A. x ph <-> A. x -. -. ph )
3 alnex
 |-  ( A. x -. -. ph <-> -. E. x -. ph )
4 2 3 bitri
 |-  ( A. x ph <-> -. E. x -. ph )