Metamath Proof Explorer


Theorem nnsuc

Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion nnsuc AωAxωA=sucx

Proof

Step Hyp Ref Expression
1 nnlim Aω¬LimA
2 1 adantr AωA¬LimA
3 nnord AωOrdA
4 orduninsuc OrdAA=A¬xOnA=sucx
5 4 adantr OrdAAA=A¬xOnA=sucx
6 df-lim LimAOrdAAA=A
7 6 biimpri OrdAAA=ALimA
8 7 3expia OrdAAA=ALimA
9 5 8 sylbird OrdAA¬xOnA=sucxLimA
10 3 9 sylan AωA¬xOnA=sucxLimA
11 2 10 mt3d AωAxOnA=sucx
12 eleq1 A=sucxAωsucxω
13 12 biimpcd AωA=sucxsucxω
14 peano2b xωsucxω
15 13 14 imbitrrdi AωA=sucxxω
16 15 ancrd AωA=sucxxωA=sucx
17 16 adantld AωxOnA=sucxxωA=sucx
18 17 reximdv2 AωxOnA=sucxxωA=sucx
19 18 adantr AωAxOnA=sucxxωA=sucx
20 11 19 mpd AωAxωA=sucx