Metamath Proof Explorer


Theorem omsucne

Description: A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023)

Ref Expression
Assertion omsucne A ω A suc A

Proof

Step Hyp Ref Expression
1 nnord A ω Ord A
2 orddisj Ord A A A =
3 1 2 syl A ω A A =
4 snnzg A ω A
5 disjpss A A = A A A A
6 3 4 5 syl2anc A ω A A A
7 6 pssned A ω A A A
8 df-suc suc A = A A
9 8 neeq2i A suc A A A A
10 7 9 sylibr A ω A suc A