Metamath Proof Explorer


Theorem orddisj

Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998)

Ref Expression
Assertion orddisj Ord A A A =

Proof

Step Hyp Ref Expression
1 ordirr Ord A ¬ A A
2 disjsn A A = ¬ A A
3 1 2 sylibr Ord A A A =