Metamath Proof Explorer


Theorem orddisj

Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998)

Ref Expression
Assertion orddisj ( Ord 𝐴 → ( 𝐴 ∩ { 𝐴 } ) = ∅ )

Proof

Step Hyp Ref Expression
1 ordirr ( Ord 𝐴 → ¬ 𝐴𝐴 )
2 disjsn ( ( 𝐴 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴𝐴 )
3 1 2 sylibr ( Ord 𝐴 → ( 𝐴 ∩ { 𝐴 } ) = ∅ )