| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disj1 | ⊢ ( ( 𝐴  ∩  { 𝐵 } )  =  ∅  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  { 𝐵 } ) ) | 
						
							| 2 |  | con2b | ⊢ ( ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  { 𝐵 } )  ↔  ( 𝑥  ∈  { 𝐵 }  →  ¬  𝑥  ∈  𝐴 ) ) | 
						
							| 3 |  | velsn | ⊢ ( 𝑥  ∈  { 𝐵 }  ↔  𝑥  =  𝐵 ) | 
						
							| 4 | 3 | imbi1i | ⊢ ( ( 𝑥  ∈  { 𝐵 }  →  ¬  𝑥  ∈  𝐴 )  ↔  ( 𝑥  =  𝐵  →  ¬  𝑥  ∈  𝐴 ) ) | 
						
							| 5 |  | imnan | ⊢ ( ( 𝑥  =  𝐵  →  ¬  𝑥  ∈  𝐴 )  ↔  ¬  ( 𝑥  =  𝐵  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 6 | 2 4 5 | 3bitri | ⊢ ( ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  { 𝐵 } )  ↔  ¬  ( 𝑥  =  𝐵  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  { 𝐵 } )  ↔  ∀ 𝑥 ¬  ( 𝑥  =  𝐵  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 8 |  | alnex | ⊢ ( ∀ 𝑥 ¬  ( 𝑥  =  𝐵  ∧  𝑥  ∈  𝐴 )  ↔  ¬  ∃ 𝑥 ( 𝑥  =  𝐵  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 9 |  | dfclel | ⊢ ( 𝐵  ∈  𝐴  ↔  ∃ 𝑥 ( 𝑥  =  𝐵  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 10 | 8 9 | xchbinxr | ⊢ ( ∀ 𝑥 ¬  ( 𝑥  =  𝐵  ∧  𝑥  ∈  𝐴 )  ↔  ¬  𝐵  ∈  𝐴 ) | 
						
							| 11 | 1 7 10 | 3bitri | ⊢ ( ( 𝐴  ∩  { 𝐵 } )  =  ∅  ↔  ¬  𝐵  ∈  𝐴 ) |