| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfepfr |
|
| 2 |
|
n0 |
|
| 3 |
|
ineq2 |
|
| 4 |
3
|
eqeq1d |
|
| 5 |
4
|
rspcev |
|
| 6 |
5
|
adantll |
|
| 7 |
|
inss1 |
|
| 8 |
|
ssel2 |
|
| 9 |
|
eloni |
|
| 10 |
|
ordfr |
|
| 11 |
8 9 10
|
3syl |
|
| 12 |
|
inss2 |
|
| 13 |
|
vex |
|
| 14 |
13
|
inex1 |
|
| 15 |
14
|
epfrc |
|
| 16 |
12 15
|
mp3an2 |
|
| 17 |
11 16
|
sylan |
|
| 18 |
|
inass |
|
| 19 |
8 9
|
syl |
|
| 20 |
|
elinel2 |
|
| 21 |
|
ordelss |
|
| 22 |
19 20 21
|
syl2an |
|
| 23 |
|
sseqin2 |
|
| 24 |
22 23
|
sylib |
|
| 25 |
24
|
ineq2d |
|
| 26 |
18 25
|
eqtrid |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
27
|
rexbidva |
|
| 29 |
28
|
adantr |
|
| 30 |
17 29
|
mpbid |
|
| 31 |
|
ssrexv |
|
| 32 |
7 30 31
|
mpsyl |
|
| 33 |
6 32
|
pm2.61dane |
|
| 34 |
33
|
ex |
|
| 35 |
34
|
exlimdv |
|
| 36 |
2 35
|
biimtrid |
|
| 37 |
36
|
imp |
|
| 38 |
1 37
|
mpgbir |
|